Aug 3, 2015

Basics : Number System Remainders 1

When dividend is of the form a + b or a - b :

rule
  1. What is the remainder when (5555) 2222 + (2222) 5555 is divided by 7?
       The remainders when 5555 and 2222 are divided by 7 are 4 and 3 respectively.
       Hence, the problem reduces to finding the remainder when (4) 2222 + (3) 5555 is divided by 7.
       Now (4) 2222 + (3) 5555 = (4 1111 + (3 1111 = (16) 1111 + (243) 1111 .
        Now (16) 1111 + (243) 1111 is divisible by 16 + 243 or
        it is divisible by 259, which is a multiple of 7.
       Hence the remainder when (5555) 2222 + (2222) 5555 is divided by 7 is zero.
  1. 20 2004 + 16 2004 - 3 2004 - 1 is divisible by:    (a) 317 (b) 323 (c) 253 (d) 91
         20 2004 + 16 2004 - 3 2004 - 1 = (20 2004 - 3 2004 ) + (16 2004 - 1 2004 )
         20 2004 - 3 2004 is divisible by 17 (Theorem 3) and
        16 2004 - 1 2004 is divisible by 17 (Theorem 2).
        Hence the complete expression is divisible by 17.

        20 2004 + 16 2004 - 3 2004 - 1 = (20 2004 - 1 2004 ) + (16 2004 - 3 2004 ).
        Now 20 2004 - 1 2004 is divisible by 19 (Theorem 3) and
       16 2004 - 3 2004 is divisible by 19 (Theorem 2).
       Hence the complete expression is also divisible by 19. is divisible by 17 × 19 = 323.



 Fermat's Theorem
rule
  1. What is the remainder when n - n is divided by 42?
Since 7 is prime, n - n is divisible by 7.
 n - n = n(n - 1) = n (n + 1)(n - 1)(n + n + 1)
Now (n - 1)(n)(n + 1) is divisible by 3! = 6
Hence n - n is divisible by 6 x 7 = 42. Hence the remainder is 0.

 Wilson's Theorem

rule
  1. Find the remainder when 16! Is divided by 17.
              16! = (16! + 1) -1 = (16! + 1) + 16 - 17
              Every term except 16 is divisible by 17 in the above expression.
              Hence the remainder = the remainder obtained when 16 is divided by 17 = 16

No comments:

Post a Comment