Jun 7, 2012

Geometry : 116


22. Isosceles angle

Let ABC be an isosceles triangle (AB = AC) with angle angleBAC = 20°.  Point D is on side AC such that angleDBC = 60°.  Point E is on side AB such that angleECB = 50°.  Find, with proof, the measure of angleEDB.

Isosceles triangle ABC
 
 

Solution to puzzle 22: Isosceles angle

Skip restatement of puzzle.Let ABC be an isosceles triangle (AB = AC) with angle angleBAC = 20°.  Point D is on side AC such that angleDBC = 60°.  Point E is on side AB such that angleECB = 50°.  Find, with proof, the measure of angleEDB.

Solution by Construction

Mark K on AC such that angleKBC = 20°.  Draw KB and KE.
Isosceles triangle ABC
angleBEC = angleECB, and so triangleBEC is isosceles with BE = BC.
angleBKC = angleBCK, and so triangleBKC is isosceles with BK = BC.
Therefore BE = BK. angleEBK = 60°, and so triangleEBK is equilateral.
angleBDK = angleDBK = 40° and so triangleBDK is isosceles, with KD = KB = KE.
So triangleKDE is isosceles, with angleEKD = 40°, since angleEKC = 140°.
Therefore angleEDK = 70°, yielding angleEDB = 30°.

No comments:

Post a Comment