Aug 12, 2012

Number System : 1022

Find [1/3] + [2/3] + [22/3] + [23/3] + ... + [21000/3].

 

Solution
Let f(n) = [2n/3]. Note that f(0) = f(1) = 0. 

We have 2n = (3-1)n = (-1)n mod 3, 

If n is even, then 2n/3 = f(n) + 1/3 and 
hence 2n+1/3 = 2f(n) + 2/3. 
So f(n+1) = 2f(n). 

Similarly, if n is odd, f(n+1) = 2f(n) + 1. 

Thus f(2n) = 2f(2n-1)+1 = 4f(2n-2)+1. 
Put un = f(2n) + 1/3, then un = 4un-1
But u1 = 4/3, so un = 4n/3.
Hence u1 + u2 + ... + un = (4/3)(1 + ... + 4n-1) = (4/9)(4n-1). 
So f(2) + f(4) + ... + f(2n) = (4/9)(4n-1) - n/3. 
We have f(2n+1) = f(2n), so f(3) + f(5) + ... + f(2n-1) = (8/9)(4n-1-1) - (2/3)(n-1). 
Hence f(2) + f(3) + ... + f(2n) = (2/3)(4n-1) - n.



Answer
(2/3)(21000-1)-500

No comments:

Post a Comment