Solution
Let f(n) = [2n/3]. Note that f(0) =
f(1) = 0.
We have 2n = (3-1)n = (-1)n mod 3,
If n is even, then 2n/3 = f(n) + 1/3 and
hence 2n+1/3
= 2f(n) + 2/3.
So f(n+1) = 2f(n).
Similarly, if n is odd, f(n+1) = 2f(n) + 1.
Thus f(2n) = 2f(2n-1)+1 = 4f(2n-2)+1.
Put un = f(2n) + 1/3, then un
= 4un-1.
But u1 = 4/3, so un = 4n/3.
Hence u1 + u2
+ ... + un = (4/3)(1 + ... + 4n-1) = (4/9)(4n-1). So f(2) + f(4) + ... + f(2n) = (4/9)(4n-1) - n/3.
We have f(2n+1) = f(2n), so f(3) + f(5) + ... + f(2n-1) = (8/9)(4n-1-1) - (2/3)(n-1).
Hence f(2) + f(3) + ... + f(2n) = (2/3)(4n-1) - n.
Answer
(2/3)(21000-1)-500
No comments:
Post a Comment